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Abstract—Price reduction and performance improvement of
cloud computing and web hosting services by making use of
container virtualization technology engender greater demands
on the efficiency of highly used multi-tenant user environ-
ments and for maintenance, security, and appropriate resource
management. However, maintaining the availability and load
balancing on access congestion remain dependent on the con-
figurations of the respective systems. As described herein,
we propose a homeostatic system architecture that rapidly
adapts to execution environment changes. It reactively decides
invocation, running periods, simultaneous running numbers,
and assigned resources of the containers according to the
incoming HTTP requests. Our proposed architecture enables
automatic and rapid load balancing by generating and dis-
carding the containers following the access frequency in cases
of access congestion. The method improves resource utilization
efficiency by automatically discarding the containers within a
fixed period, which contributes to increasing opportunities for
reflecting the library updates.

1. Introduction

Opportunities for users to express themselves on the
internet are increasing along with the diversification of
companies and individuals working on the internet. Espe-
cially for individuals, by spreading contents created using
Twitter or Facebook, it has become possible to increase the
number of visits to contents efficiently. Consequently, high
quality contents are spread further. It is becoming possible to
brand-identify individuals according to their linked contents.
Generally, web hosting services and cloud services are used
for individuals to distribute web contents [13].

Along with price reduction and performance improve-
ment of web hosting services and cloud services, OS vir-
tualization technology [3] is used to provide stable and
secure execution of multiple execution environments of web
applications on a single web server. Among OS virtual-
ization technologies, using a container-type virtualization
technology [17] that can manage resources by isolating a
user area on a per-process basis, one can more efficiently
accommodate multiple execution environments than virtual
machines can.
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For cloud services, users must implement a mechanism
of autoscale [16] that can withstand access concentration.
It is necessary to use the autoscale functions provided by
the respective service providers. With an autoscale function
provided by a service provider such as AWS, based on
monitoring items provided by the service provider itself, it is
necessary to start up a self-built virtual machine internally
or to use an external service. Because it is necessary to
start the virtual machine automatically, it takes time to do
scale processing against burst access concentration. In many
cases, the load distribution is not in time [7]. Furthermore,
it is difficult for users with insufficient technical knowledge
to construct a load distribution mechanism quickly.

As described in this paper, on the premise that people
with knowledge sufficient to use only the standard web
hosting service distribute web contents without technical
expert knowledge, we propose a system architecture by
which service users need not construct a load distribution
system and operate/manage libraries. This architecture is
homeostatic. It can quickly adapt to changing the execution
environment by reactively determining startup of a container
in an HTTP request. The “reactive determination” described
here represents detection of the load state and response
performance based on external factors on an HTTP request
basis, and ascertaining of the configuration of the container
quickly according to the situation. We designate this archi-
tecture as FastContainer.

As a concrete method to realize the load balancing
process quickly after clearly separating the user data and the
application process in the execution of the web application,
the architecture determines the state of a container, such as
activation or inactivation, continuation of the activation time,
resource allocation, and the number of activation containers
each HTTP requests. Furthermore, to activate the web ap-
plication executed on the container at high speed, the web
application process at the time of completion of the startup
process is imaged by CRIU [4] and is restored from the
image for changing the states. In addition, the container
stops in a certain period because the changing state time
of the process is short. This feature increases the resource
efficiency of the multi-tenant system [11]. Simultaneously,
when the library is updated, the containers are updated to a
new state quickly.

The structure of this paper is the following. We explain



autoscale and its tasks in web hosting services and cloud
services in section 2. In section 3, we describe the architec-
ture, called FastContainer. Implementation of the proposed
method to solve the difficulty is presented in section 2. In
section 4, we evaluate the response time for scaling and
for changing the statistics using the process image. We
summarize it in section 5.

2. Load distribution and operation technology

In situations in which access is most concentrated, a
high probability exists that contents diffuse widely. The
server becomes a massive load state and access becomes
difficult. Often the opportunity of valuable content diffusion
is missed. In this section, we organize the autoscale and
related operation technologies for load balancing in web
hosting service and cloud service.

The scale methods for load distribution have a scale-
up type that increases the hardware resources allocated to a
single instance like Virtual Machine (VM) and a scale-out
type that increases the activation number of instance.

2.1. Web hosting services

In the web hosting service [13], the web content of the
service user is accommodated in a specific web server. The
web server and the web content are linked. Autoscale corre-
sponding to the load is difficult in terms of data consistency.
Therefore, it is difficult to control the resources used on a
per-host basis properly or to investigate the cause quickly. It
is not possible to calculate the scale at the time of scale or
add as much resources as necessary when the user requires
the autoscale. Additionally, it is difficult for the hosting
service to respond quickly to the load with a scale-up type.

From the viewpoint of operational technology, when up-
dating the library, the effect of restarting the server process
becomes large because of the characteristic that many hosts
run on a single server process. Furthermore, because it is
difficult to limit the resources appropriately when the server
is under heavy load, it is costly to investigate and control
the cause of high load. The effect on service quality is also
considerable.

Regarding service users, middleware and functions, in-
cluding available web server software, are common to all
hosts. The degrees of freedom in system construction are
few.

2.2. Cloud services

Cloud service is a service that provides cloud computing
[12] as various services. For a cloud service, it is necessary
for the service users themselves build not only the web
contents, but also the web server software and the database.
Therefore, although it has a high degree of freedom in terms
of being able to design the system individually for load
balancing, it requires expert knowledge. As for autoscale,
cloud providers provide the function of increasing or de-
creasing instances according to the load [1]. However, the

monitoring interval of the load and the startup time of the
instance are rate limiting. The time to detect against sudden
access lengthens.

Even if a virtual machine starts up under a high load
situation, the process itself for autoscale can not catch up at
times of sudden high loads such as the influence of television
broadcasting, often leading to service stoppage. In addition,
a method of using containers exists to solve the difficulty
of starting time of virtual machines [7] or a service that can
define detailed conditions for scaling by external service
cooperation [9]. However, the startup processing of web
application server processes such as Ruby on Rails [14] on
containers is still slow. Immediacy is low against a sudden
load.

Generally, to respond quickly to a high-load state, a
method of activating a virtual machine of an expected
amount to some degree is taken in advance. However, it
is difficult to form an appropriate estimate from the balance
of limited costs such as hardware, operation, and service
level.

The AWS of the cloud service provider determines the
computer resource automatically by installing an application
by the notation specified by the provider and automatically
scaling the computer resource on the provider side under
high load such as AWS Lambda [2]. However, these services
are intended for engineers who have technical knowledge.
When using such a service, it is challenging to autoscale
after publishing web contents without technical knowledge
for users targeted by the web hosting service.

3. Proposed method

Considering the characteristics of various current ser-
vices, controlling the instant instantly under the load within
a limited resource range is necessary. On the premise of
a web server function with reactiveness, an architecture
must manage instances flexibly. Moreover, it must ensure
performance that does not entail difficulties in practical use.
The requirements are summarized below.

o The architecture can scale-up and scale-up instances
quickly with a granularity of HTTP request units.

o The architecture monitors the instance at a granular-
ity of HTTP request units and issue scale processing
instruction of the instance.

« To improve the resource efficiency of servers, the
architecture stops unnecessary instances. It can ac-
tivate the instances with an HTTP request trigger
when necessary.

Furthermore, this architecture has the following require-
ment as a web hosting service.

o The service provider supports server operation, such
as by update of OS and the library.

o The service provider supports a widely used general
web application such as WordPress.

o The service provider supports autoscale when the
load concentrates, even if there is no specialized
technical knowledge related to the load distribution.



e The service provider supports pay-per-use at the
granularity of about the web application execution
time.

o The service reduces hardware costs by increasing the
host accommodation efficiency.

o The service updates OS and libraries to ensure se-
curity at high frequencies.

As described in this paper, to make it possible to deploy
the user area quickly to multiple servers when distributing
web contents, we propose an architecture that the service
user need not construct the load distribution system or
manage the libraries. This architecture reactively determines
changes of states such as web application container startup,
startup duration, the number of containers, and scale pro-
cessing judgment for each HTTP request. This architecture
can adapt quickly to changes in the execution environment.
Moreover, it has homeostasis. We designate this architecture
as FastContainer.

The FastContainer architecture uses Linux containers as
instances, not virtual machines. The container on Linux [5]
is a virtualization technology to isolate the OS environment
virtually at the process level while sharing the kernel.

3.1. Reactive and mortal architecture

The FastContainer architecture combines the benefit that
the container can start up faster than the virtual machine
and that the architecture secures performance while improv-
ing resource efficiency by high-speed adapting execution
environment changes. The FastContainer architecture sep-
arates the data and application processing in the execution
processing of the web application started on the container.
Furthermore, under the load state and the response perfor-
mance for each HTTP request, the activation processing of
the web application container, the activation duration time,
the container activation number, and the resource allocation
are all determined reactively.

In the proposed method, an immediate response is trans-
mitted if one or more containers is activated. When the
container stops, the processes are performed for a certain
period after starting the container with the request as a
trigger. As a result, even if all the containers stop, the
availability becomes high because the container startup on
a per-request basis. Additionally, by activating the container
for a certain period, once the container is activated, the
response can be transmitted without affecting the activation
time. FastContainer is a reactive and mortal architecture.

At the time of access concentration, the already-started
container monitors the throttled value of cgroup [15], indi-
cating failure of the allocation of the CPU own time of the
container itself, scaling out if 80% or more failed, 5 min.
If the average failure value is less than 10%, the container
that scaled out is stopped based on the container startup
duration.

When scaling out, it automatically registers the con-
tainer information of the new containers to the configuration
management database (CMDB) via the management APIL

Subsequently the web proxy located in front of the container
transfers the request to the new container based on the
configuration management database.

In this transfer operation, the web dispatcher on the
server containing the containers transfers the request to the
specified container if the container is active. If it is not
activated, then the container configuration information is
acquired from the CMDB, the request is transferred after
activating the container first. However, if the container is
running, then the request is transferred only to the already
activated container so that the architecture can distribute to
a new container after the container completes the startup
processing.

FastContainer saves data related to web applications on
shared storage. If a server group containing containers is
mounted in the same area, irrespective of which server the
container is activated, then it can operate correctly on the
CMDB based on the container configuration information.

To realize the FastContainer architecture as a system,
complicated control of containers is necessary. Kondo et
al. developed Haconiwa [6], and we use Haconiwa for
FastContainer implementation. In addition to configuring
container resource allocation and process isolation configu-
ration information, Haconiwa can describe Ruby Domain-
specific language (DSL) in various phases at container
startup, shutdown, and container setting. It is a container
runtime that can define container pluggable behaviors.

3.2. High-speed state transition for containers

As described in section 1, a method of using containers
exists to solve the difficulty of the starting time of virtual
machines. However, the startup processing of web applica-
tion server processes such as Ruby on Rails on containers
is still slow. Even for containers, immediacy is low against
a sudden load.

To perform state transition at high speed, the web ap-
plication process running on the container uses CRIU [4]
to image the process state immediately after finishing the
startup of the process. At the time of container startup, CRIU
restore the process from that image. Even if using software
with a long startup time such as Ruby on Rails, it can be
started at high speed.

Features of the proposed method are that CRIU ac-
celerates the container activation, that containers start-up
reactively triggered by request, and that a managed process
monitors resources for autoscaling each HTTP request. With
these features, it is possible to autoscale rapidly against
sudden loads.

As for scale-up, container resource management is con-
trolled by cgroup on a per-process basis. Using the cgroup
feature, an assignment such as CPU usage time can be
changed immediately even if the process is running.

A container is discarded in a certain period, thereby re-
ducing the number of unnecessary processes to be activated
and increasing the container accommodation efficiency. Fur-
thermore, when the library is updated, it is guaranteed to be
updated to the new state at all times.
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Figure 1. Example of FastContainer System using Haconiwa.

3.3. Differences from Serverless architecture

The Serverless architecture [10] does not operate the
application on the infrastructure side, whereas the FastCon-
tainer architecture allows general CMS such as WordPress
to be deployed or auto-scalable. Part of the infrastructure
side corresponds to the application operation. In addition,
because Serverless architecture similar to AWS Lambda
requires predetermined coding by the user, it is intended
mainly for engineers and researchers. By contrast, the Fast-
Container architecture can use general-purpose web appli-
cations and can be scaled on the infrastructure side when
concentrating access. Users without engineering expertise
receive the value of scale by this feature.

Heroku [8] reported a free plan to restrict the uptime of
the container and the sleep time that is unable to handle the
request after reactivating the container on a per-request basis
to reduce the usage of server resources. Because Heroku’s
pay plan has no sleep time, it is apparently an architecture
that processes requests stably using an approach that con-
tinues to activate containers while periodically restarting.

The FastContainer architecture speeds change of a state
such as a stop, startup, and scaling process. Regarding re-
source efficiency, FastContainer circulates containers by re-
actively changing states. It produces change-resistant home-
ostasis. Those features are the primary objective of Fast-
Container.

4. Experiment

4.1. Evaluation of scale processing

To confirm the effectiveness of the FastContainer ar-
chitecture, we constructed a prototype environment using
FastContainer, as shown in Figure 1, and evaluated the scale
processing of the container. Table 1 presents the experiment
environment and the various roles. NIC and OS of each role
of experiment environment were all 1 Gbps for NIC and

TABLE 1. EXPERIMENT ENVIRONMENT

Ttems Specifications
Compute Server on which the container runs
CPU Intel Xeon E5-2650 2.20 GHz 12 core
Memory 39 GBytes
UserProxy | Transfer request to container based on CMDB
CPU Intel Xeon E5620 2.40 GHz 4 core
Memory 4 GBytes
CoreAPI Control container configuration management information
CPU Intel Xeon E5620 2.40 GHz 8 core
Memory 8 GBytes
CMDB Save container configuration management information
CPU Intel Xeon E5620 2.40 GHz 4 core
Memory 16 GBytes
DataPool Contain container contents
CPU Intel Xeon E5620 2.40 GHz 2 core
Memory 4 GBytes
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Figure 2. FastContainer Auto-Scale-Out.

Ubuntu 14.04 Kernel 4.4.0 for OS. For the experiment, we
built only the role of table 1 and benchmark the container
started with Compute from UserProxy. The experiment en-
vironment saves container data into DataPool, with NFS
mounted from Compute to DataPool.

On the container, activate Apache 2.4.10 in one process,
install PHP 5.6.30, and execute the content that only exe-
cutes the phpinfo( ) function to acquire PHP environment
information. In addition, the maximum CPU usage of the
container is limited to 30% of 1 core by the cgroup function.
We adopted the benchmark-setting value that can use up
30% of CPU from preliminary experiments, 100 simultane-
ous connections, and 100,000 total requests.

We used the ab command for the benchmark. In this
experiment, we make requests to CoreAPI for adding con-
tainers manually. We do not use CRIU in this experiment
for evaluation by another experiment.

In the benchmark, the average value of response time
per second was created as time series data and graphed.
Subsequently, we run the benchmark. When the number
of processing requests exceeds 50,000, execute the load
correspondence of the scale-out type and the scale-up type.
Then, we confirm that the scale processing runs immediately
and that the response time becomes short. Scale-out type is
shown in Figure 2 Scale-up type results are shown in Figure
3.

The denoted by 1 container” of Figure 2 shows results
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Figure 3. FastContainer Auto-Scale-Up.

for the benchmark for one container. During the benchmark,
the limited maximum CPU usage rate of 30 % is always
in use. In this state, the response time is about 700 ms,
as shown generally. Additionally, increasing the number of
concurrent connections does not further increase the number
of failed requests processing. Therefore, this value is the
maximum response time in which one container can process
without failing to process the request.

Next, the graph indicated by 1 to 2 container” de-
scending from around the horizontal axis of 340 s is the
result when the experiment system performs autoscale-out
at 335 s on the horizontal axis that reached 50,000 requests.
Furthermore, from the graph, which shows the high speed of
the container rising in a few seconds and the auto scale-out
process reactively activated for the request, quickly scaled
out, the response time is inferred to be about half. The
experiment system can perform auto scale-out at high speed,
as shown in the graph. As a concrete numerical value, auto
scale-out occurs at the time point of 335 s. Because the
scaling process is being conducted until 339 s, the response
time remains 700 ms. The experiment system completes
the scale-out at 340 s. The response time for the second
is between 100 ms and 400 ms.

In the case of ’1 container”, processing 100,000 requests
took about 720 s. As the response time becomes short, the
processing of 100,000 requests was completed in about 470
s, as shown in the graph.

”1 container” of Figure 3 shows a graph in the case of
not doing any scale processing, similarly to 1 container”
of Figure 2. The graph of 1 container CPU 30 %-60 %”
descending from 300 s on the horizontal axis shows the
response time transition when scaling up the CPU maximum
usage rate to 60% at the horizontal axis 301 s.

In addition, from this graph, the experiment system
immediately performs scale-up from the point of 301 s on
the horizontal axis where the request processing reached
50,000 requests, without delay in long response time or
failure in response processing.

As a concrete numerical value, auto scale-up occurred
at 301 s. The response time started falling from 700 ms to
574 ms from 302 s. It became 358 ms at the time of 304 s
and stabilized at around 350 ms after that.

The auto scale-up affects the immediate response time
rather than the auto scale-out because it is easier to increase

TABLE 2. EXPERIMENT ENVIRONMENT

Items Specifications

Client Client server running benchmark
CPU Intel Xeon E5-2650 2.20 GHz 1 core
Memory 2 GBytes

Compute Container accommodating server
CPU Intel Xeon E5-2650 2.20 GHz 8 core
Memory 51 GBytes

UserProxy | Forwarding request to container based on CMDB
CPU Intel Xeon E5-2650 2.20 GHz 1 core
Memory 2 GBytes

CoreAPI Controlling container configuration management information
CPU Intel Xeon E5-2650 2.20 GHz 1 core
Memory 2 GBytes

CMDB Save configuration management information of container
CPU Intel Xeon E5-2650 2.20 GHz 1 core
Memory 16 GBytes

DataPool Contain container contents
Storage NetApp FAS8200A
FlashPool  8.73 TB

the resources of the direct operating container than scale-
out. The performance cost of adding a new container for
activation such as scale-out is high.

4.2. Evaluating startup speed from images

For this experiment, we used the CRIU to dump the
image of processes in the startup completion state before-
hand. We measured the response time when starting from
the image according to the response.

Table 2 shows the experiment environment and the
various roles. As in the experiment in the 4.1 section,
we built a prototype environment using FastContainer as
shown in Figure 1. NIC and OS of each role of experiment
environment were all 1 Gbps for NIC, Ubuntu 16.04 for
OS, and 4.4.0-59-generic for the kernel. Container data were
saved on DataPool and were mounted from Compute to
DataPool with NFSv3.

As a web application server, we used the default page
of Ruby on Rails, which takes a long time to start up, for
experiments. The version of Ruby on Rails is 5.1.3. The
version of Ruby is 2.5.1. The experiment system allocates
one CPU core and 1 GBytes memory of the Compute server
to the container.

For comparison, we prepared containers with and with-
out CRIU. For the experiment, we benchmarked Ruby on
Rails running on the container using the ab command with
the number of simultaneous connections is 1. When the
benchmark has passed 40 s, the environment system stops
the container. The FastContainer architecture starts reac-
tively when the next request is received even if the container
is down. At that time, we compared whether the response
time differs between the case of starting from the image of
processes and the case of not activating from the image.

Figure 4 shows the response time of the Rails container
when not using CRIU. Figure 5 presents the response time
when using CRIU. The default page of Ruby on Rails loads
67 gems, which are extension libraries of Ruby, and uses
about 75 MBytes of RSS (the real memory resident set size
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a certain period. When the library is updated, the frequency
of updating to the new state also increases.

As we develop new software such as FastContainer
architecture by ourselves and with other individuals, it
is necessary to clarify the standing position of container-
related software and the comparison target and to make
the cooperation of each layer more generalized. For that
purpose, we plan to continue research and development
while considering collaboration with other tools and tech-
nical background firmly, in addition to discussion with tool
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Figure 5. Response Time of Rails Container with CRIU.

of the process). In the case of such containers and web
applications such as the Figure 4, if rails do not use CRIU,
it will take about 2900 ms to start up. By contrast, when
using CRIU, it is possible to start up in about 1200 ms and
return a response such as that in Figure 5.

Using CRIU, even a server for which a startup time
of the web application is slow can be activated quickly by
starting from the image of processes completed in advance
for the startup processing. As a result, using CRIU as
the state transition of FastContainer, it can respond to the
request reactively, without depending on the start time of the
web application. For that reason, it can duplicate containers
efficiently, even in autoscaling.

5. Conclusion

This study examined our proposed FastContainer of a
container management architecture, which allows the user
environment composed of containers to autoscale at HTTP
request timing, without requiring specialized knowledge for
service users in web hosting service. Even for a process that
takes time to start up for a web application such as Ruby
on Rails, by application of the process image restoration
by CRIU, the time of the auto scale-out with reactivity
is considerably short. Additionally, resource efficiency of
FastContainer is higher by discarding the container during

developers.
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