Automatic Whitelist Generation for SQL Queries Using Web Application Tests

Komei Nomura
Pepabo R&D Institute,
GMO Pepabo, Inc.
Email: komei.nomura@pepabo.com

Abstract—Stealing confidential information from a database
has become a severe vulnerability issue for web applications.
The attacks can be prevented by defining a whitelist of SQL
queries issued by web applications and detecting queries not in
list. For large-scale web applications, automated generation of
the whitelist is conducted because manually defining numerous
query patterns is impractical for developers. Conventional
methods for automated generation are unable to detect attacks
immediately because of the long time required for collecting
legitimate queries. Moreover, they require application-specific
implementations that reduce the versatility of the methods. As
described herein, we propose a method to generate a whitelist
automatically using queries issued during web application
tests. Our proposed method uses the queries generated during
application tests. It is independent of specific applications,
which yields improved timeliness against attacks and versatility
for multiple applications.

1. Introduction

Attacks exploiting web application vulnerability are oc-
curring continually. Confidential information of services
such as personal information is leaked because of the attacks
[1], [2]. The attacks are caused by executing illegal queries
to the database, which are not unexpected by application
developers. To prevent this outcome, illegal queries must be
detected before they are executed in the database.

Applying detection methods used for network attack
detection [3], [4] is a common practice for detecting illegal
database queries. Two categories of methods are common
for detecting illegal queries: using a blacklist and a whitelist
[5]. In a blacklist method, developers define the known
illegal patterns in the blacklist. The matched queries are
detected. The blacklist method is useful in other web ap-
plications as common illegal patterns because the blacklist
defines specific strings of SQL used for attacks. However,
defining illegal patterns requires broad and detailed knowl-
edge about the attacks. A lack of developer’s knowledge
causes incompleteness in the definition of the list. Even if all
the illegal patterns were definable, unexpected illegal queries
that are not defined in the blacklist would not be detectable
[6].

Kenji Rikitake
Pepabo R&D Institute,
GMO Pepabo, Inc. / KRPEO
Email: kenji.rikitake @acm.org

Ryosuke Matsumoto
SAKURA Research Center,
SAKURA Internet Inc.
Email: r-matsumoto@sakura.ad.jp

When using a whitelist method, the whitelist defines the
queries issued by the web application. Queries not on the
whitelist are detected. The whitelist method can detect a
completely unexpected illegal query that is issued. However,
the developers must define the whitelist for each web appli-
cation because the queries issued mutually differ. We have
chosen to pursue the whitelist method because detecting
illegal queries to the greatest extent possible is fundamen-
tally important to satisfy the goal of our research, which
is to protect confidential information in a web application
database.

A related work [7] proposes a non-automatic genera-
tion of a whitelist of queries issued by a web application,
conducted by the developers. This non-automatic genera-
tion method, however, imposes an impractical burden on
developers. The number of queries issued by the large-
scale and complex web application is enormous. Developers
must grasp all queries issued by the web application. In
addition, as the queries issued by web application change
with updating of the web application, the developer must
update the whitelist according to those changes. Another
related work [8], [9] proposes a method of generating the
whitelist of queries issued by the web application automat-
ically to reduce the burden on the developer. We note two
shortcomings associated with these methods: (1) the illegal
queries cannot be detected using a whitelist immediately
after the start-up of the web application because generation
of the whitelist requires queries generated by the user input;
and (2) each web application requires a separate method
because of differences of implementation.

This study examines an automatic whitelist generation
method using queries issued during the development testing
phase, where developers maintain the test code following
changes of the target web application. The method re-
duces developer burdens for implementing countermeasures
against illegal queries. Furthermore, the proposed method
solve the shortcommings of conventional methods. The
proposed method can detect illegal queries from the start-
up of the web application by incorporating a generated
whitelist at the testing phase. A database proxy placed in
front of a database collects the queries necessary to generate
the whitelist. The collected queries are converted into the
query structures replacing the literals inside the queries
with the placeholders. The structures are registered in the

whitelist. Collecting queries with the database proxy enable
whitelist generation independent of the web application im-
plementation. Because the whitelist is generated by queries
during testing phase, the queries detected using the proposed
method are queries that were not issued during testing. The
detected queries include illegal queries.

The remainder of the paper is organized as explained
below. First, we summarize issues related to generating a
whitelist of queries issued by the web application in section
2. We describe the development process with the whitelist.
The detection characteristics and the architecture of the
proposed method are discussed in section 3. In section 4, we
evaluate the detection accuracy of the whitelist generated us-
ing the proposed method. Then we discuss the effectiveness
of the proposed method in section 5. Section 6 concludes
the paper.

2. Issues of whitelist generation

A method exists for manual creation of a whitelist of
queries issued by a web application, which is conducted by
the developer [7]. A query structure that replaces literals of
the query with placeholders is registered in the whitelist be-
cause they are issued by a web application change depending
on the user’s input [10]. Therefore, the developer specifies
all processes of issuing a query from the web application
source code and registers the query structure in the whitelist.

Generating a whitelist without using an automatic
method imposes a burden on the developer. Because web
applications become larger and more complicated as devel-
opment progress, the number of queries issued by a web
application increases. Consequently, the number of queries
that the developer must grasp becomes enormous, making
whitelist generation difficult. To maintain detection accuracy
of the whitelist, a developer must update the whitelist ac-
cording to changes of queries issued by the web application.
A developer frequently updates the whitelist because queries
issued by a web application is changed by updating the web
application frequently [11].

Furthermore, when object-relational mapping (ORM)
[12] is used to implement the web application, the devel-
oper is less aware of the queries issued by the application.
Actually, ORM provides a function to associate records in
a database and objects in object-oriented languages. Fur-
thermore, ORM allows the developer to handle records in
the database as objects. Developers using ORM rarely write
an SQL statement in this case. For example, when using
Ruby on Rails [13] as the web application framework for
implementing a web application, ActiveRecord [14] is used
as the ORM. A record in the database is associated with
a Ruby class object by ActiveRecord. The developer can
describe the process of issuing an SQL query with Ruby
code. Table 1 shows correspondence between Ruby code
and SQL query when the class object User is associated
with the records of the table users in the database. When
using ORM for implementation of the web application, it is
difficult for the developer to understand the issued queries
because they can extract data from the database using an

TABLE 1. EXAMPLE OF SQL QUERY ISSUED BY RUBY CODE

Ruby code User.find (1)
SQL que SELECT % FROM users WHERE
query (users.id = 1) LIMIT 1

object. Generating a whitelist without an automated method
is unsuitable for development of the web application using
ORM because understanding the SQL queries increases the
developer workload. These facts demonstrate that generating
whitelist without a burden on the developer is required.

2.1. Generating a whitelist using issued queries

A method that generates a whitelist by collecting queries
issued by the web application when it is running has been
proposed [8], [15]. The collected queries are converted into
the query structure and are registered in the whitelist. That
method can generate the whitelist automatically when the
web application is running. This method has a learning
phase for collecting queries and generating the whitelist. It
also has a detection phase for detection using the whitelist.
Illegal queries cannot be detected during the learning phase
because the whitelist has not been generated yet. Therefore,
the method cannot immediately detect illegal queries after
the web application is running.

For a web application having a high update frequency, a
learning phase is frequently required, so that a period during
which detection cannot be performed each time occurs.
Generating a whitelist should be done before running the
web application because generating a whitelist after running
it causes a period during which an illegal query cannot be
detected. That method can create a whitelist from query
logs of web applications collected in the past. However,
generating a whitelist by query logs cannot update the
whitelist correctly according to changes of queries when the
web application is updated because the query log includes
queries that came to be newly issued and queries that ceased
to be issued after the web application was updated.

2.2. Generating a whitelist using static analysis

A method that generates a whitelist by analyzing the
process of query issuance in the web application source
code has been proposed [9]. This method can detect illegal
queries immediately after the web application is running
because it generates a whitelist before it runs. Because the
analysis process of the source code depends on the language
or web application framework used for the implementation,
it is necessary to implement it for each application. Various
implementation languages such as PHP, Ruby, and web
application frameworks are used to develop web applica-
tions. Consequently, some web applications are developed
with different implementation. In this case, a method that
depends on the web application implementation is unsuitable
because it requires implementation for each. Some method
that is independent of the web application implementation
is required to resolve this issue.

(1) Development [«————

(1) Development ~ [=—
(2) Write test code
(2) Write test code |«+——

i (3) Execute Automatic test

J’ : Collect queries :
(3) Execute Automatic test H 1

H Generate whitelist H
Test : :
succeed?

No | el
(4) Deploy to server

b

Test No
succeed?
Yes

I (5) Deploy to server
(5) Start application l
(6) Start application

Development process using automatic test ~ Development process with the whitelist

Figure 1. Development process using automatic testing and development
process with whitelist generation.

3. Proposed method

For this study, we propose a method for the automatic
generation of a whitelist using web application testing to
reduce the whitelist generation burden on developers. We
assume a development process by which the operation test
of the web application is managed as test code and by which
the developer prepares the test code according to a change
of the web application. In this development process, the
proposed method collects queries issued during testing and
generates a whitelist from them.

3.1. Development process with the whitelist

The proposed method incorporates a process of whitelist
generation at the testing phase of the development process
using the automatic test. To show the whitelist generation
flow using the proposed method, we describe development
process using automatic test and development process with
whitelist generation using Figurel.

We explain the development process using the automatic
test portrayed in Figure 1. In (1), the developer develops
new functions or modifies the existing functions of a web
application. In (2), the developer writes test cases, which
are operation procedures used when testing web applications
and an expected operation result occurs in the test code. In
(3), the developer executes all tests using the test code and
checks whether the web application operates as specified. If
the tests fail, then the behavior of the developed function
does not operate as specified or the test code is incorrect. In
this case, the developer identifies the cause of the failure of
the tests and modifies the source code of the web application
or the test code. If the tests succeed, then the developers
assume that the developed function operates as specified.
In this case, the source code of the new web application is
placed on the server in (4) and the web application is started
in (5).

We explain the development process with the whitelist of
Figure 1. The process of generating whitelist is incorporated
into the execution phase of the automatic test as shown in

(3)’. The whitelist is generated using queries issued from the
web application during automatic testing. The source code
of the new web application and the whitelist is placed on
the server after successful testing.

Because the queries issued by the web application that
are changed by functions are added or modified, it is
necessary to generate a whitelist correspondingly. In the
development process using the automatic test, the queries
issued during testing change because the test code is pre-
pared according to the change of the web application. The
proposed method maintains the consistency of the whitelist
and the queries issued by the web application using the
queries issued during testing. Illegal queries can be detected
immediately after the web application start-up because the
whitelist is generated entirely at the testing phase. This
characteristic cannot be realized using the method of starting
the generation of the whitelist during running of the web
application. Our proposed method requires no addition of
new development tasks. The effect on the development
process when introducing the proposed method is small.

Let us describe the differences in the burdens of writing
the test code and manually creating the whitelist by develop-
ers. The developer writes test cases that assume the behavior
of the web application in the test code. The developer must
understand the behavior of the web application to derive
the test cases. The developer registers the query structures
of the query issued by the web application in the whitelist.
Consequently, the developer must understand the processes
of issuing the queries in detail. Developers must also un-
derstand the behavior of ORM when ORM is used for web
application development. Therefore, it is unlikely that the
developer understands details of the process issuing a query
in this case. Writing the test code is likely to demand less
than creating the whitelist manually.

3.2. Detection characteristics

In this section, we describe the detection characteristics
of the whitelist generated using the proposed method. False
positive and false negative are used as indicators of detec-
tion. False positive occurs when a query issued by a web
application receiving a user input assumed by a developer
is determined as illegal. False negative occurs when a query
issued by a web application vulnerability attacks cannot
be determined as illegal. The proposed method generates
a whitelist using the query issued during testing. Therefore,
the whitelist detects queries that were not issued during
testing. The detected queries include untested non-illegal
queries and illegal queries. Non-illegal queries that have not
been tested are queries issued by user input while the web
application is running. However, because of a lack of test
cases, they are queries that were not issued at the time of
testing. These queries cause false positives. Illegal queries
are those issued by attacking web application vulnerabilities.
The whitelist might also contain illegal queries issued only
during the testing phase. These queries cause false negatives.
Examples of such queries include queries for registering test

All queries |
Queries issued by Web application

lllegal queries

Queries issued during

testing

llegal queries issued during testing [l] : Queries in the whitelist

(False negative) : Queries not in the whitelist

Figure 2. Relationship of queries.

TABLE 2. EXAMPLE OF QUERY THAT IS NOT DETECTED USING THE
PROPOSED METHOD

Legitimate query SELECT * FROM users LIMIT 30
Abnormal query

(anomaly)

SELECT x FROM users LIMIT 1000

data in a database and queries for deleting test data. Figure
2 shows the relationships of the queries above.

Adding test cases and improving test coverage expand
the area of queries issued during testing in Figure 2. There-
fore, false positives are reduced. However, some concern
arises that management will be complicated by increasing
test cases. A method of registering non-illegal queries that
have not been tested in whitelist without adding test cases
must be considered.

The query structure in which literals of the query are
replaced with placeholders is registered in the whitelist.
For example, "SELECT % FROM users LIMIT 10”
replaces the literal ”10” with the placeholder ”?” and
registers it in the whitelist as "SELECT » FROM users
LIMIT ?2”. The proposed method detects queries with the
query structures that are not in the whitelist. Therefore, the
attacks that inject strings containing SQL statements into
literals and which change the query structure such as SQL
injection attacks [16] can be detected using the proposed
method. However, because the proposed method does not
set thresholds of numerical literals, queries that have illegal
numerical literal cannot be detected. Table 2 presents an
example of queries that are not detected using the proposed
method.

The query presented in Table 2 has the same query
structure, but the numerical literal differs. Addressing this
case requires consideration of a method of detecting an
anomaly of the literal of the query.

3.3. Architecture of the proposed method

In the proposed method, a database proxy that is placed
in front of the database collects queries issued during testing
and detects illegal queries while the web application is run-
ning. Whitelist generation flow during testing and detection

SELECT *FROM B
users.

q WHERE id=1

h
SELECT * FROM
users
S| 'WHERE id=1
Database proxy |————
h
SELECT * FROM
users
q WHERE id="?

Whitelist

Yeb applcation

|

Figure 3. Architecture of the proposed method.

during running of the web application are explained using
Figure 3.

First, a test is executed. Queries are issued from the web
application to the database proxy. The database proxy passes
the received query to the database and records the relayed
query during this time. After all tests are completed, the
database proxy replaces the literals of the recorded queries
with the placeholder and registers them in the whitelist. Col-
lecting queries using the database proxy realized whitelist
generation independent of the web application implementa-
tion.

We also explain detection during running of the web ap-
plication using Figure 3. First, the web application receives
input from the user and issues a query. Next, a database
proxy receives a query issued from the web application,
converts the received query into the query structure, and
checks whether it is on the whitelist. If the query is on
the whitelist, then it passes the query to the database and
executes it. If the query is not on the whitelist, then the
developer is notified of the detected query.

Detection of an illegal query has the process to refer
to the whitelist. If the referral process of the whitelist is
slow, then the concern arises that the query stagnates at
the database proxy and that the response time to the user
increases. Therefore, the computational complexity of the
referral process of the whitelist is fundamentally important.
When searching all query structures in the whitelist to
ascertain whether a query is illegal, or not, the compu-
tational complexity is O(n) for the number of entries n
in the whitelist. To avoid this, the whitelist is created in
the proposed method, as a hash table for which the query
structure is a key. The computational complexity of the
referral process of the whitelist is O(1) using the hash table.
Consequently, the proposed method can refer to the whitelist
with constant computational complexity irrespective of the
number of entries in the whitelist.

4. Experiment

To verify the effectiveness of the proposed method, we
evaluated the detection accuracy of the whitelist created
using the proposed method. We described in section 3.2
that the whitelist generated by the proposed method might
have false positives and false negatives. In this section, we
present the experiment results and the evaluation. The false
positive means that a query issued by a web application
receiving a user input assumed by a developer is determined

TABLE 3. IMPLEMENTED METHODS

HTTP URL operation
GET articles Show all articles
GET articles?title="" | Show articles searched by title
POST articles Create articles
GET articles/:id Show articles
PATCH articles/:id Update articles
DELETE articles/:id Delete articles

as illegal. The false negative means that a query issued by
web application vulnerability attacks cannot be determined
as illegal.

We constructed the experimental environment and con-
firmed false positives and false negatives by experimenta-
tion. We used ProxySQL [17] as a database proxy. Actually,
ProxySQL has a function to collect a received query and
convert it into a query structure and save it. We used this
function to generate a whitelist. We created the title and
content column in the article table using MySQL supported
by ProxySQL. We implemented methods for the web ap-
plication to control the article table using Ruby on Rails.
Then we described the tests for all methods. Table 3 presents
the implemented methods. We implemented SQL injection
vulnerability into the GET method of the operation ”Show
articles searched by title” in Table 3.

A whitelist with 23 entries was generated using the
query structures recorded in ProxySQL after running the
web application tests. We obtained 17 legitimate queries.
The legitimate queries were generated manually from the
browser by sending HTTP requests to the web application
implementing the method shown in Table 3. A false positive
rate is derived by counting queries that are not on the
whitelist in the legitimate queries. We obtained 265 illegal
queries. Illegal queries were generated by sending HTTP
requests that have SQL injection attack using sqlmap [18]
for the method that shows articles searched by title. The
false negative rate is derived by counting queries that are
on the whitelist in the illegal queries. We measured the test
coverage of web application using SimpleCov [19] because
the queries registered in the whitelist change depend on it.
SimpleCov counts the lines of the source code executed
during testing and calculates the test coverage.

As a result of the experiment when test coverage is
68.97%, the false positive rate was 17.65%; the false neg-
ative rate was 0%. Results show that the proposed method
causes false positives, but it does not cause any false nega-
tive.

Let us describe false positives in the experiment. False
positives occur although the tests are described for all meth-
ods of web applications. Queries detected as false positives
were 3, which is 17.65% of the legitimate queries. Figure 4
shows the queries detected as false positive.

The web application implemented by Ruby on Rails does
not issue queries shown in Figure 4 because the article
data before the update on the database were the same
as the article data generated after executing the query of
UPDATE. The method of issuing UPDATE query is included

. UPDATE ‘articles' SET ‘content' = ?,

‘updated_at ' = ? WHERE ‘articles‘.‘id‘ =
?

e UPDATE ‘articles‘ SET ‘title' = ?,
‘updated_at ' = ? WHERE ‘articles‘.‘id‘' =
?

e UPDATE ‘articles‘ SET ‘title' = ?, ‘content®
= ?, ‘updated_at‘' = ? WHERE ‘articles‘.‘id‘

=2

Figure 4. Queries detected as false positive.

ROLLBACK

SELECT COUNT (*) FROM ‘articles'

RELEASE SAVEPOINT active_record_1

SAVEPOINT active_record_1

SET FOREIGN_KEY_ CHECKS = ?

SELECT ‘articles‘.x FROM ‘articles‘ ORDER BY

‘articles‘.‘id' DESC LIMIT *?

. DELETE FROM ‘articles‘; INSERT INTO
‘articles (‘id‘, ‘title‘, ‘content?,
‘created_at‘', ‘updated_at‘) VALUES (2, ?,
2,02, 02, (2, 02, 02, 2, 2), (2, 2, 2, 2, ?);

. SELECT QQ@FOREIGN_KEY_CHECKS

. SELECT @@max_allowed_packet

Figure 5. Illegal queries issued during testing.

in the calculation of test coverage because it is executed
during testing. The difference of behavior by Ruby on Rails
suggests that some queries are not issued during testing
depending on the test case, even if the test coverage is 100%.
Complementing queries that were not issued during testing
because of a lack of test cases is necessary to reduce the
false positives.

Let us describe false negatives in the experiment. No
false negative occurred in the experiment. Nevertheless, the
possibility of false negative exists because the whitelist
includes illegal queries issued only during testing. We inves-
tigated the rate of illegal queries contained in the whitelist
and its query structure. The rate of illegal queries contained
in the whitelist was 39.13%. Figure 5 shows only the query
structures issued during testing.

The proposed method cannot detect queries with the
query structure shown in Figure 5. The SQL injection attack
injects arbitrary SQL string into the query issued by the web
application. It changes the execution result of the query. A
query issued by a SQL injection attack is a query issued
by a web application plus specific SQL strings used for the
attack. The possibility that these queries match the query
structures shown in the Figure 5 cannot be denied. However,
the possibility of such a case occurring is regarded as low
because false negatives did not occur in the experiment.

5. Discussion

The proposed method can use an automatic test to gen-
erate a whitelist during the development process. The devel-
oper can obtain a whitelist in the development process with-
out changing it. The queries issued during testing include
queries issued by changes of the web application because the

test code is prepared according to their changes. Therefore,
the whitelist can be updated as the web application updates.
The proposed method can detect illegal queries immediately
after a web application is running because it creates a
whitelist at the testing phase before the web application is
running. These facts show that the proposed method can
take countermeasures against illegal queries while reducing
the burden on developers by whitelist creation.

The proposed method can create a whitelist independent
of the implementation of the web application because the
database proxy collects queries and creates it. Therefore,
the proposed method is suitable for creating a whitelist for
some web applications with different implementations.

We confirmed from the experiment described in section
4 that the proposed method can detect illegal queries issued
by an SQL injection attack. We confirmed that false posi-
tives occurred because the queries issued by methods might
change depending on test cases, even if tests are described
for all methods. Therefore, when the proposed method is
applied to a larger-scale web application, the number of
false positive queries is regarded as increasing because of
the increase of the number of issued queries. To resolve this
difficulty, one must consider a method of supplementing
queries that can not be registered in the whitelist among
the queries issued by the web application. Additionally,
the whitelist includes queries issued only during the test.
Consequently, the proposed method is unable to detect cases
in which queries with the same query structure are issued as
attacks. To prevent this eventuality, it is necessary to remove
queries issued only during the test from the whitelist.

6. Conclusion and future work

As described in this paper, we proposed a method for
automatically generating a whitelist using queries issued
during testing to reduce the burden on developer given by
whitelist creation, while particularly addressing the testing
of the development process. The proposed method can
detect illegal queries immediately from the start-up of the
web application because the whitelist was generated at the
testing phase of the development process. The generation
was automated. It effectively reduced the burden on the
developers. Furthermore, the proposed method did not de-
pend on implementation of the web application because the
database proxy collected the queries necessary for whitelist
generation irrespective of the web application. Results show
that the proposed method is suitable for creating a whitelist
for a set of web applications with multiple implementations.

Our proposed method can be used effectively as a coun-
termeasure against SQL injection attacks. We confirmed the
following observations.

e The proposed method can detect illegal queries is-
sued by SQL injection attack without false negatives.

o False positives can occur even if the tests described
all possible methods of the web application because
the query issued by the method of the web applica-
tion changes depending on the test case details.

Our future work shall include the following:

« to reduce false positives, supplementing queries not
registered in the whitelist that were actually issued
by web applications;

« removal of the illegal queries issued only during the
testing phase from the whitelist, thereby eliminating
the possibility of false negatives;

« verifying detection accuracy in large-scale web ap-
plications; and

« measuring the overhead of illegal query detection to
the response time of the database from queries of
the web applications.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]
[19]

IT Security Center, Information-technology promotion agency (IPA),
How to Secure your Website Fifth edition, Apr 2011.

J. Rahul and S. Pankaj, “A survey on web application vulnerabilities
(sqlia, xss) exploitation and security engine for sql injection,” in 2012
International Conference on Communication Systems and Network
Technologies, May 2012, pp. 453-458.

S. Axelsson, “Intrusion detection systems: A survey and taxonomy,”
in Technical Report 99-15, Mar 2000.

F. S. Rietta, “Application layer intrusion detection for sql injection,”
in Proceedings of the 44th annual Southeast regional conference, Mar
2006, pp. 531-536.

V. Luong, “Intrusion detection and prevention system: Sql-injection
attacks,” in Master’s Projects. 16, 2010.

M. Ofer and S. Amichai, SQL injection signatures evasion. Imperva,
Inc. White paper, Apr 2004.

K. Kemalis and T. Tzouramanis, “Sql-ids: a specification-based ap-
proach for sql-injection detection,” in Proceedings of the 2008 ACM
symposium on Applied computing, 2008, pp. 2153-2158.

F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the
detection of sql attacks,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, 2005, pp.
123-140.

W. G. Halfond and A. Orso, “Amnesia: analysis and monitoring
for neutralizing sql-injection attacks,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated Software Engi-
neering, Nov 2005, pp. 174-183.

D. Kar and S. Panigrahi, “Prevention of sql injection attack using
query transformation and hashing,” in Advance Computing Confer-
ence (IACC), 2013 IEEE Third International, May 2013, pp. 1317-
1323.

J. Mehdi, “Some trends in web application development,” in 2007
Future of Software Engineering, 2007, pp. 199-213.

S. W. Ambler, Mapping objects to relational databases, 2000.

M. Bichle and P. Kirchberg, “Ruby on rails,” IEEE software, vol. 24,
no. 6, pp. 105-108, 2007.

M. Fowler, Patterns of enterprise application architecture, 2002.

F. José, V. Marco, and M. Henrique, “Detecting malicious sql,” in
International Conference on Trust, Privacy and Security in Digital
Business, 2007, pp. 259-268.

W. G. Halfond and A. Orso, “A classification of sql injection attacks
and countermeasures,” in Proceedings of the IEEE International
Symposium on Secure Software Engineering, Vol.1, 2006, pp. 13—15.

“Proxysql,” http://www.proxysql.com/.
“sqlmap,” http://sqlmap.org/.
“Simplecov,” https://github.com/colszowka/simplecov.

